
Virtual Reality
Real-time Rendering

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 2 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Sources of Latency During Rendering

§  Classical pipeline:

§  Latency:

§  Idea: render more than one viewport

render

he
ad

sw
ap

display

Scene graph
traversal Transform

Culling

Clipping
Viewport
mapping

Fr
on

t b
uf

fe
r

Ba
ck

 b
uf

fe
r

Pixel scan

DAC RGB

Head
pos & ori

Main
loop

Main
loop

G. Zachmann 3 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Viewport Independent Rendering

§  Conceptual idea:

§  Render the scene onto a sphere around the viewer

§  If viewpoint rotates: just determine new cutout of the spherical
viewport

§  Practical implementation:

§  Use cube as a viewport around user,
instead of sphere

§  This was also one of the motivations
to build Cave's

G. Zachmann 4 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  New pipeline:

§  Latency:

Scene graph
traversal

Transform

Classification Clipping

Fr
on

t b
uf

fe
r

Ba
ck

 b
uf

fe
r

Pixel scan

DAC RGB

Viewport
mapping

Head orientation

Locate
pixel

Anti-Aliasing

render

he
ad

sw

ap

display

Head
position

Main
loop

Main
loop

G. Zachmann 5 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Image Composition

§  Conceptual idea:

§  Each thread renders only its "own" object in its own framebuffer

§  Video hardware reads framebuffer including Z-buffer

§  Image compositor combines individual images by comparing Z per
pixel

§  In practice:

§  Partition set of objects

§  Render each subset on one PC

G. Zachmann 6 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Another technique: Prioritized Rendering

§  Observation: images of objects far away from viewpoint (or slow
relative to viewpoint) change slowly

§  Idea: render onto several cuboid viewport "shells" around user
§  Fastest objects on innermost shell, slowest/distant objects on outer shell
§  Re-render innermost shell very often, outermost very rarely

§  How many shells must be re-rendered depends on:
§  Framerate required by application
§  Complexity of scene
§  Speed of viewpoint
§  Speed of objects (relative to viewpoint)

§  Human factors have influence on priority, too:
§  Head cannot turn by 180° in one frame →

objects "behind" must be updated only rarely
§ Objects being manipulated must have highest priority
§ Objects in peripheral field of vision can be updated less often

G. Zachmann 7 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Constant Framerate by "Omitting"

§  Reasons for a constant framerate:
§  Prediction in predictive filtering of tracking data of head/hands works only,

if all subsequent stages in the pipeline run at a known (constant) rate

§  Jumps in framerate (e.g., from 60 to 30 Hz) are very noticeable (called
stutter/judder)

§  Rendering is "time-critical computing":
§  Rendering gets a certain time budget (e.g., 17 msec)

§  Rendering algorithm has to produce an image "as good as possible"

§  Techniques for "Omitting" stuff:
§  Levels-of-Detail (LODs)

§ Omit invisible geometry (Culling)

§  Image-based rendering

§  Reduce the lighting model, reduce amount of textures,

§  ... ?

G. Zachmann 8 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

The Level-of-Detail Technique

§  Example – do you see a difference?

§  Definition:
 A level-of-detail (LOD) of an object is a reduced version,
 i.e. that has less polygons.

G. Zachmann 9 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Idea: render that LOD that fits the distance from the viewpoint,
i.e., where users can't see the difference from the full-res. version

§  The technique consists of two tasks:

1.  Preprocessing: for each object in the scene, generate k LODs

2.  Runtime: select the "right" LODs, make switch unnoticeable

G. Zachmann 10 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Selection of LOD

§  Balance visual quality against "temporal quality"
§  Static selection algorithm:

§  Level i for a distance range

§  Depends on FoV
§  Problem: size of objects

is not considered

§  For some desktop applications,
e.g. terrain rendering,
this can be sufficient:

LOD

100% 50% 30%

G. Zachmann 11 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Dynamic selection algorithm:

§  Estimate size of object on the screen

§  Advantage: independent from screen resolution,
FoV, size of objects

§  LOD depends on distance automatically

G. Zachmann 12 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Estimation of Size of Object on the Screen

§  Naïve method:

§  Compute bounding box (bbox) of object in 3D (probably already
known by scenegraph for occlusion culling)

§  Project bbox in 2D → 8x 2D points

§  Compute 2D bbox (axis aligned) around 8 points

§  Better method:

§  Compute true area of projected 3D bbox on screen

G. Zachmann 13 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Idea of the Algorithm

§  Determine number of sides of 3D bbox that are visible:

§  Project only points on the silhouette (4 or 6) in 2D:

§  Compute area of this (convex!) polygon

G. Zachmann 14 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Implementation

§  For each pair of (parallel) box sides (i.e., each slab):

classify viewpoint with respect to this pair into "below", "above",

or "between"

§  Yields 3x3x3 = 27 possibilities

§  In other words: the sides of a cube partition space into 27 subsets

§  Utilize bit-codes (à la out-codes from clipping) and a lookup-table

§  Yields LUT with 26 entries (conceptually)

§  27-1 entries of the LUT list each the 4 or 6 vertices of the silhouette

§  Then, project, triangulate (determined by each casein LUT),

accumulate areas

G. Zachmann 15 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Psychophysiological LOD Selection

§  Idea: exploit human factors with respect to
visual acuity:

§  Central / peripheral vision:

§ Motion of obj (relative to viewpoint):

§  Depth of obj (relative to horopter):

b1 θ

t0

t1

Δϕ

ϕ0

ϕ1

b1

1

k1 =

�
e�(�–b1)/c1 , � > b1

1 , sonst

G. Zachmann 16 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Determination of LODs:

1. 

2. 

3.  Select level l such that

where Pl is the set of polygons of level l of an object

§  Do we need eye tracking for this to work?

§  Disadvantages of eye tracking: expensive, imprecise, "intrusive"

§  Psychophysiology: eyes always deviate < 15° from head direction

§  So, assume eye direction = head direction, and choose b1= 15°

k = min{ki}·k0 , oder k =
�

ki ·k0

⇤p ⇥ Pl : r(p) � rmin

rmin = 1/k

G. Zachmann 17 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Reactive vs. Predictive LOD Selection

§  Reactive LOD selection:

§  Keep history of rendering durations

§  Estimate duration Tr for next frame, based on history

§  Let Tb = time budget that can be spent for next frame

§  If Tr > Tb : decrease LODs (use coarser levels)

§  If Tr < Tb: increase LODs (finer levels)

§  Then, render frame and record time duration in history

G. Zachmann 18 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Reactive LOD selection can produce severe outliers

§  Example scenario:

G. Zachmann 19 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Predictive LOD Selection [Funkhouser und Sequin]

§  Definition object tuple (O,L,R):
 O = object, L = level,
 R = rendering algo (#textures, anti-aliasing, #light sources)

§  Evaluation functions on object tuples:
 Cost(O,L,R) = time needed for rendering
 Benefit(O,L,R) = "contribution to image"

§  Optimization problem:

 find

 under the condition

 where S = { mögliche Objekt-Tupel in der Szene }

max
S ��S

�

(O,L,R)⇥S �

benefit(O, L, R)

Tr =

X

(O,L,R)2S 0

cost(O, L, R) Tb

G. Zachmann 20 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Cost function depends on:

§  Number of vertices (~ # coord. transforms + lighting calcs + clipping)

§  Setup per polygon

§  Number of pixels (scanline conversions, alpha blending, texture fetching,
anti-aliasing, Phong shading)

§  Theoretical cost model:

§  Better determine the cost function by experiments:
Render a number of different objects
with all different parameter settings
possible

polygons

t

Cost(O, L,R) = max

�
C1 ·Poly + C2 ·Vert

C3 ·Pixels

⇥

G. Zachmann 21 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Benefit function: "contribution" to image is affected by

§  Size of object

§  Shading method:

§  Distance from center (periphery, depth)

§  Velocity

§  Semantic "importance" (e.g., grasped objects are very important)

§  Hysteresis for penalizing LOD switches:

§  Together:

Rendering(O, L, R) =

�
⌅⇤

⌅⇥

1� c
pgons , flat

1� c
vert , Gouraud

1� c
vert , Phong

Benefit(O, L, R) =Size(O)·Rendering(O, L, R) ·
Importance(O)·O�Center(O) ·
Vel(O)·Hysteresis(O, L, R)

Hysterese(O, L, R) =
c1

1 + |L� L�| +
c2

1 + |R � R �|

G. Zachmann 22 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Optimization problem = "multiple-choice knapsack problem"
→ NP-complete

§  Idea: compute sub-optimal solution:

§  Reduce it to continuous knapsack problem (see algorithms class)

§  Solve it greedily with one additional constraint

§  Define

§  Sort all object tuples by value(O,L,R)

§  Choose the first k tuples until knapsack is full

§  Constraint: no 2 object tuples must represent the same object

value(O, L, R) =
benefit(O, L, R)

cost(O, L, R)

G. Zachmann 23 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Incremental solution:

§  Start with solution as of last frame

§  If

then find object tuple ,
such that

and

§  Analog, if

(Ok , Lk , Rk)

value(Ok , Lk + a, Rk + b)� value(Ok , Lk , Rk) = max

(O1, L1,1), . . . , (On, Ln,Rn)

X

i

cost(Oi , Li ,Ri) max. frame time

X

i 6=k

cost(Oi , Li ,Ri) + cost(Ok , Lk + a,Rk + b) max. frame time

X

i

cost(Oi , Li ,Ri) > max. frame time

G. Zachmann 24 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Performance in the example scenes

G. Zachmann 25 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Screenshots from the Example Scenes

§  Screenshots aus der Beispiel-Szene:

No detail elision, 19,821 polygons Optimization, 1,389 polys,
0.1 sec/frame target frame time

Level of detail: darker
gray means more detail

G. Zachmann 30 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Problem with Discrete LODs

§  "Popping" when switching to next higher/lower level

§  Measures against "popping":

§  Hysteresis (just reduces the frequency of pops a little bit)

§  Alpha blending of the two adjacent LOD levels

-  Man kommt vom Regen in die Traufe ;-)

§  Continuous, view-dependent LODs

G. Zachmann 31 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Alpha-LODs

§  Simple idea to avoid popping:
when beyond a certain range, fade out level i until gone,
at the same time fade in level i+1

G. Zachmann 32 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Progressive Meshes

§  A.k.a. Geomorph-LODs

§  Initial idea / goal:

§  Given two meshes Mi and Mi+1 (LODs of the same object)

§  Construct mesh M' "in-between" Mi and Mi+1

§  In the following, we will do more

§  Definition: Progressive Mesh = representation of an object,
starting with a high-resolution mesh M0, with which one can
continuously (up to the edge level) generate "in-between"
meshes ranging from 1 polygon up to M0 (and do that extremely
fast).

G. Zachmann 33 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Construction of Progressive Meshes

§  Approach: successive simplification, until only 1 polygon left

§  The fundamental opetration: edge collapse

§  Reverse operation = vertex split

§  Not every edge can be chosen: bad edge collapses

v u
v

v u

edge crossing!
polygon overlap

G. Zachmann 34 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  The order of edge collapses is important:

§  Introduce measure on edge collapses, in order to evaluate "visual
effect"

§  Goal: first perform edge collapses that have the least visual effect

§  Remark: after every edge collapse, all remaining edges need to be
evaluated again, because their "visual effect" (if collapsed) might
be different now

u v v u

G. Zachmann 35 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Evaluation function for edge collapses is not trivial and, more
importantly, perception-based!

§  Factors influencing "visual effect":

§  Curvature of edge / surface

§  Lighting, texturing, viewpoint (highlights!)

§  Semantics of the geometry (eyes & mouth are very important in faces)

§  Examples of a progressive mesh:

G. Zachmann 36 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Representation of a progressive meshes:

§ Mi+1 = i-th refinement =
1 vertex more than Mi

§  Representation of an
edge collapse / vertex split:

§  Edge (= pair of vertices) affected by the collapse/split

§  Position of the "new" vertex

§  Triangles that need to be deleted / inserted

ecol

vsplit

M = Mn	 M1	 M0	…	
ecoln-1 ecol0 ecol1

vsplitn-1 vsplit0 vsplit1

G. Zachmann 37 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Example for a Simple Edge Evaluation Function

§  Follow this heuristic:

§  Delete small edges first

§ Move vertex U onto vertex V, if surface incident to U has smaller
(discrete) curvature than surface around V

§  A simple measure for an edge collapse from U onto V:

U
V n1

n2
nf

cost(U , V) = ⇥U � V ⇥·curv(U)

curv(U) = 1
2

�
1 � min

f �T (U)\T (V)
max
i=1,2

nf ni

⇥

G. Zachmann 38 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Remark:

§  Example:

cost(U , V) �= cost(V , U)

Low visual
disturbance

High visual
disturbance

G. Zachmann 39 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Demo

[Michael Garland: Qslim]

How can the Funkhouser-Sequin algorithms
be combined with progressive meshes?

Diplomarbeit …

G. Zachmann 40 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Digression: Other Kinds of LODs

§  Idea: apply LOD technique to other non-geometric content

§  E.g. "behavioral LOD":

§  Simulate the behavior of an object exactly if in focus, otherwise
simulate it only "approximately"

G. Zachmann 41 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Culling in Buildings (Portal Culling)

§  Observation: many rooms within the viewing frustum are not
visible

§  Idea:

§  Partition the VE into "cells"

§  Precompute cell-to-cell-visibility → visibility graph

G. Zachmann 42 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  During runtime, filter cells from visibility graph by viewpoint and
viewing frustum:

G. Zachmann 43 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  State in OpenGL rendering =
§  Combination of all attributes

§  Examples for attributes: color, material, lighting parameters, number
of textures being used, shader program, etc.

§  At any time, each attribute has exactly 1 value out of a set of possible
attributes (e.g., color∈{ (0,0,0), …, (255,255,255) }

§  State changes are a serious performance killer!

§  Costs:

§  Goal: render complete scene graph with minimal number of state
changes

§  "Solution": pre-sorting

Matrix stack
modification

Lighting
modification

Texture
modification

Shader program
modification

State Sorting

G. Zachmann 44 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Problem: optimal solution is NP-complete

§  Reason:

§  Each leaf of the scene graph can be
regarded as a node in a
complete graph

§  Costs of an edge = costs of the
corresponding state change
(different state changes cost
differently, e.g., changing the
transform is cheap)

§ Wanted: shortest path through graph

à Traveling Salesman Problem

§  Further problem: precomputation doesn't work with dynamic
scenes and occlusion culling

Scenegraph
leaf

Last part of
the state:

e.g., material 1st part of the
state: e.g., light

source

G. Zachmann 45 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Introducing the Sorting Buffer

§  Idea & abstraction:

§  For sake of argument: just consider 1 attribute ("color")

§  Introduce buffer between application and graphics card

-  (Could be incorporated into driver / hardware, since an OpenGL command
buffer is already in place)

§  Buffer contains elements with different colors

§ With each rendering step (= app sends "colored element" to
hardware/buffer), perform one of 3 operations:

1.  Pass element directly on to graphics hardware; or,

2.  Store element in buffer; or,

3.  Extract subset of elements from buffer and send them to graphics hardware

Graphics hardware Sequence of objs Buffer for state sorting

G. Zachmann 46 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Online Algorithms

§  There are 2 categories of algorithms:

§  "Online" algorithms: algo does not know elements that will be received in
the future!

§  "Offline" algorithms: Algo does know elements that will be received in the
future (for a fair comparison, it still has to store/extract them in a buffer,
but it can utilize its knowledge of the future to decide whether to store it)

§  In the following, we consider wlog. only the "lazy" online strategy:

§  Extract elements from the buffer only in case of buffer overflow

§  Because every non-lazy online strategy can be converted into a lazy online
strategy with same complexity (= costs)

§  Question in our case: which elements should be extracted from the
buffer (in case of buffer overflow), so that we achieve the minimal
number of color changes?

G. Zachmann 47 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Competitive Analysis

§  Definition c-competitive :
 Let = costs (= number of color changes) of optimal
 offline strategy, k = buffer size.
 Let = costs of some online strategy.
 Then, this strategy is called "c-competitive" iff

 where a must not depend on k.
 The ratio

 is called the competitive-ratio.

§  Wanted: an online strategy with a c as small as possible
(in the worst-case, and — more importantly — in the average case)

C
o↵

(k)

C
on

(k)

C
on

(k) = c ·C
o↵

(k) + a

C
on

(k)

C
o↵

(k)
⇡ c

G. Zachmann 48 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Example: LRU strategy (Least-Recently Used)

§  The strategy:

§ Maintain a timestamp per color (not per element!)

§ When element gets stored in buffer →
timestamp of its color is set to current time

-  Notice: timestamps of other elements in buffer can change, too

§  Buffer overflow → extract elements, whose color has oldest timestamp

§  The lower bound on the competitive-ratio:

§  Proof by example:

§  Set , wlog. m is even

§  Choose the input

§  Costs of the online LRU strategy: color changes

§  Costs of the offline strategy: 2m color changes,
because its output is =

(m + 1)·2·m2

(xky k)
m
2
c

m
1 · · · cmm

G. Zachmann 49 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

The Bounded Waste & the Random Choice Strategy

§  Idea:
§  Count the number of all elements in buffer that have the same color

§  Extract those elements whose color is most prevalent in the buffer

§  Introduce waste counter W(c) :
§ With color change on input side: increment W(c)

§  Bounded waste strategy:
§ With buffer overflow, extract all elements of color c', whose W(c') = max

§  Competitive ratio (w/o proof):

§  Random choice strategy:
§  Randomized version of bounded waste strategy

§  Choose uniformly a random element in buffer, extract all elements with
same color (most prevalent color in buffer has highest probability)

§  Consequence: more prevalent color gets chosen more often, over time
each color gets chosen W(c) times

O
�
log

2 k
�

G. Zachmann 50 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

The Round Robin Strategy

§  Problem: generation of good random numbers is fairly costly

§  Round robin strategy:

§  Variant of random choice strategy

§  Don't choose a random slot in the buffer,

§  Instead, every time choose the next slot

§ Maintain pointer to current slot, move pointer to next slot every time a
slot is chosen

G. Zachmann 51 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Comparison

§  Take-home message:

§  Round-robin yields very good results (although/
and is very simple)

§ Worst case doesn't say too much about
performance in real-world applications

G. Zachmann 52 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Stereoscopic Image Cloning (Stereo without 2x rendering)

§  Observation: left & right image differ not very much

§  Idea: render 1x for right image, then move pixels to
corresponding positions in left image → image warping

§  Algo: consider all pixels on each scanline from right to left,
draw each pixel k at the new x-coordinate

𝛥 = pixel width

§  Problems:

§  Holes!

§  Up vector must be vertical

§  Reflections and specular
highlights are at wrong position

§  Heavy aliasing

e

z0

zk

?

x

0
k = xk +

e

�

zk

zk + z0

G. Zachmann 53 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Image Warping

§  A naïve VR system:

§  Latency in this system (stereo with 60 Hz → display refresh = 120 Hz):

Tracking
system

T0 T4

Appl.
(Simul.)

T1

Renderer
T2

Display
(e.g. HMD)

T3 User

L R L R Display

16.6 ms

System

T0

Tracker

T4

New appl. frame

10 ms

T1

Application (Simul) Renderer

T2

30 ms

T3

swaplock

50 ms 8 ms

G. Zachmann 54 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Problems / observations:

§  The appl. framerate (incl. rendering) is typically much slower than the
display refresh rate

§  The tracking data, which led to a specific image, were valid in the
distant past

§  The tracker could deliver data more often

§  Consecutive frames differ from each other (most of the time) only
relatively little (→ temporal coherence)

L R L R Display

16.6 ms

System

T0

Tracker

T4

New appl. frame

10 ms

T1

Application (Simul) Renderer

T2

30 ms

T3 swaplock

50 ms 8 ms

G. Zachmann 55 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Idea for a Solution [2009]

§  Decouple simulation/animation, rendering, and device polling:

Object transform.,
camera- position

Input devices (tracker)

Simulation / Animation

Shared
scene graph

Appl. renderer
(client)

GPU 1 shared memory GPU 2

Display

Warping
renderer
(server) Only

object
Transf.

20 Hz

FBO

60 Hz Transform
10242x GL_POINTs

Camera pos.

Texture

G. Zachmann 56 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

An Application Frame (Client)

§  At time t1, the application renderer generates a normal frame

§  Color buffer and Z-buffer

§  Henceforth called "application frame"

§  … but additionally saves some information:

1.  With each pixel, save ID of object visible at that pixel

2.  Save camera transformations at time t1

3.  With each object i , save its transformation

Tt1,cam�img , Tt1,wld�cam

G. Zachmann 57 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Warping of a Frame (Server)

§  At a later time t2 , the server generates an image from an
application frame by warping

§  Transformations at this time:

§  A pixel in the appl. frame will be "warped" to its
correct position in the (new) server frame:

§  This transform. matrix can be
precomputed for each object
with each new server frame

t1

t2

Appl. frame →

← Server frame

T i
t2,wld�obj Tt2,img�cam Tt2,cam�wld

G. Zachmann 58 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

PA
Appl-Frame
(t1)

PA
Appl Frame
(t1)

-z

Camera (t1)

y

x

-z
Camera (t1)

y

x

x

World (t1)

y

z

x
World (t1)

y

z

x

Object

y

z

P

x
Object

y

z

P

x

World (t2)

y

z

x
World (t2)

y

z

-z

Camera (t2)

y

x

P

-z
Camera (t2)

y

x

P

PA Warped
Server-Frame
(t2)

PS

PA
Warped
Server Frame
(t2)

PS

G. Zachmann 59 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Remarks

§  Implementation of the warping:

§  In the vertex shader

-  Doesn't work in the fragment shader, because the output (= pixel) position is
fixed in fragment shaders!

§ Warping renderer treats the image in the FBO containing the app
frame as a texture , and it loads all the Ti’s

§  Render 1024x1024 many GL_POINTs (called point splats)

§  Advantages:

§  The frames (visible to the user) are now "more current", because of
more current camera and object positions

§  Server framerate is independent of number of polygons

G. Zachmann 60 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

§  Problems:
§  Holes in server frame

-  Need to fill them, e.g., by ray casting

§  Server frames are fuzzy (unscharf)
(because of point splats)

§  How large should the point splats be?

§  The application renderer (full image
renderer) can be only so slow
(if it's too slow, then server frames
become too bad)

§  Unfilled parts along the border
of the server frames
-  Could make the viewing frustum for the appl. frames larger …

§  Performance gain:
§  12m polygons, 800 x 600

§  Factor ~20 faster

t1

t2

Loch!

G. Zachmann 61 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

Videos

G. Zachmann 62 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

G. Zachmann 63 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

G. Zachmann 64 Real-Time Rendering Virtual Reality & Simulation 6 November 2013 WS

